import { aA as settings, y as forceGet, a0 as cloneSkinnedMesh, a1 as Loader, a2 as LoaderUtils, a3 as FileLoader, aa as Color, aj as SpotLight$1, ah as PointLight$1, ak as DirectionalLight$1, d as MeshBasicMaterial, ab as sRGBEncoding, aB as MeshPhysicalMaterial, h as Vector2, aC as TangentSpaceNormalMap, a4 as TextureLoader, aD as ImageBitmapLoader, aE as InterleavedBuffer, f as BufferAttribute, aF as LinearFilter, aG as LinearMipmapLinearFilter, a5 as RepeatWrapping, aH as PointsMaterial, aI as Material, b as LineBasicMaterial, aJ as MeshStandardMaterial, D as DoubleSide, ae as PropertyBinding, g as BufferGeometry, al as SkinnedMesh, M as Mesh, aK as LineSegments, K as Line, aL as LineLoop, aM as Points, G as Group$1, ag as PerspectiveCamera, ai as MathUtils, af as OrthographicCamera, aN as InterpolateLinear, ar as AnimationClip, ad as Bone, O as Object3D, a as Matrix4, am as Skeleton, aO as TriangleFanDrawMode, av as increaseLoadingCount, aw as decreaseLoadingCount, ax as LinearEncoding, ay as handleProgress, aP as NearestFilter, aQ as NearestMipmapNearestFilter, aR as LinearMipmapNearestFilter, aS as NearestMipmapLinearFilter, a6 as ClampToEdgeWrapping, aT as MirroredRepeatWrapping, aU as InterpolateDiscrete, F as FrontSide, aV as InterleavedBufferAttribute, a7 as Texture, aW as TriangleStripDrawMode, as as VectorKeyframeTrack, at as QuaternionKeyframeTrack, au as NumberKeyframeTrack, V as Vector3, aX as Interpolant, B as Box3, S as Sphere$1, Q as Quaternion } from './app/_nuxt/model-9bf70e2c.mjs'; import 'vue'; import 'vue/server-renderer'; class GLTFLoader extends Loader { constructor(manager) { super(manager); this.dracoLoader = null; this.ktx2Loader = null; this.meshoptDecoder = null; this.pluginCallbacks = []; this.register(function(parser) { return new GLTFMaterialsClearcoatExtension(parser); }); this.register(function(parser) { return new GLTFTextureBasisUExtension(parser); }); this.register(function(parser) { return new GLTFTextureWebPExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsSheenExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsTransmissionExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsVolumeExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsIorExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsEmissiveStrengthExtension(parser); }); this.register(function(parser) { return new GLTFMaterialsSpecularExtension(parser); }); this.register(function(parser) { return new GLTFLightsExtension(parser); }); this.register(function(parser) { return new GLTFMeshoptCompression(parser); }); } load(url, onLoad, onProgress, onError) { const scope = this; let resourcePath; if (this.resourcePath !== "") { resourcePath = this.resourcePath; } else if (this.path !== "") { resourcePath = this.path; } else { resourcePath = LoaderUtils.extractUrlBase(url); } this.manager.itemStart(url); const _onError = function(e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); scope.manager.itemEnd(url); }; const loader2 = new FileLoader(this.manager); loader2.setPath(this.path); loader2.setResponseType("arraybuffer"); loader2.setRequestHeader(this.requestHeader); loader2.setWithCredentials(this.withCredentials); loader2.load(url, function(data) { try { scope.parse(data, resourcePath, function(gltf) { onLoad(gltf); scope.manager.itemEnd(url); }, _onError); } catch (e) { _onError(e); } }, onProgress, _onError); } setDRACOLoader(dracoLoader2) { this.dracoLoader = dracoLoader2; return this; } setDDSLoader() { throw new Error('THREE.GLTFLoader: "MSFT_texture_dds" no longer supported. Please update to "KHR_texture_basisu".'); } setKTX2Loader(ktx2Loader) { this.ktx2Loader = ktx2Loader; return this; } setMeshoptDecoder(meshoptDecoder) { this.meshoptDecoder = meshoptDecoder; return this; } register(callback) { if (this.pluginCallbacks.indexOf(callback) === -1) { this.pluginCallbacks.push(callback); } return this; } unregister(callback) { if (this.pluginCallbacks.indexOf(callback) !== -1) { this.pluginCallbacks.splice(this.pluginCallbacks.indexOf(callback), 1); } return this; } parse(data, path, onLoad, onError) { let content; const extensions = {}; const plugins = {}; if (typeof data === "string") { content = data; } else { const magic = LoaderUtils.decodeText(new Uint8Array(data, 0, 4)); if (magic === BINARY_EXTENSION_HEADER_MAGIC) { try { extensions[EXTENSIONS.KHR_BINARY_GLTF] = new GLTFBinaryExtension(data); } catch (error) { if (onError) onError(error); return; } content = extensions[EXTENSIONS.KHR_BINARY_GLTF].content; } else { content = LoaderUtils.decodeText(new Uint8Array(data)); } } const json = JSON.parse(content); if (json.asset === void 0 || json.asset.version[0] < 2) { if (onError) onError(new Error("THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.")); return; } const parser = new GLTFParser(json, { path: path || this.resourcePath || "", crossOrigin: this.crossOrigin, requestHeader: this.requestHeader, manager: this.manager, ktx2Loader: this.ktx2Loader, meshoptDecoder: this.meshoptDecoder }); parser.fileLoader.setRequestHeader(this.requestHeader); for (let i = 0; i < this.pluginCallbacks.length; i++) { const plugin = this.pluginCallbacks[i](parser); plugins[plugin.name] = plugin; extensions[plugin.name] = true; } if (json.extensionsUsed) { for (let i = 0; i < json.extensionsUsed.length; ++i) { const extensionName = json.extensionsUsed[i]; const extensionsRequired = json.extensionsRequired || []; switch (extensionName) { case EXTENSIONS.KHR_MATERIALS_UNLIT: extensions[extensionName] = new GLTFMaterialsUnlitExtension(); break; case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: extensions[extensionName] = new GLTFMaterialsPbrSpecularGlossinessExtension(); break; case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION: extensions[extensionName] = new GLTFDracoMeshCompressionExtension(json, this.dracoLoader); break; case EXTENSIONS.KHR_TEXTURE_TRANSFORM: extensions[extensionName] = new GLTFTextureTransformExtension(); break; case EXTENSIONS.KHR_MESH_QUANTIZATION: extensions[extensionName] = new GLTFMeshQuantizationExtension(); break; default: if (extensionsRequired.indexOf(extensionName) >= 0 && plugins[extensionName] === void 0) { console.warn('THREE.GLTFLoader: Unknown extension "' + extensionName + '".'); } } } } parser.setExtensions(extensions); parser.setPlugins(plugins); parser.parse(onLoad, onError); } parseAsync(data, path) { const scope = this; return new Promise(function(resolve, reject) { scope.parse(data, path, resolve, reject); }); } } function GLTFRegistry() { let objects = {}; return { get: function(key) { return objects[key]; }, add: function(key, object) { objects[key] = object; }, remove: function(key) { delete objects[key]; }, removeAll: function() { objects = {}; } }; } const EXTENSIONS = { KHR_BINARY_GLTF: "KHR_binary_glTF", KHR_DRACO_MESH_COMPRESSION: "KHR_draco_mesh_compression", KHR_LIGHTS_PUNCTUAL: "KHR_lights_punctual", KHR_MATERIALS_CLEARCOAT: "KHR_materials_clearcoat", KHR_MATERIALS_IOR: "KHR_materials_ior", KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: "KHR_materials_pbrSpecularGlossiness", KHR_MATERIALS_SHEEN: "KHR_materials_sheen", KHR_MATERIALS_SPECULAR: "KHR_materials_specular", KHR_MATERIALS_TRANSMISSION: "KHR_materials_transmission", KHR_MATERIALS_UNLIT: "KHR_materials_unlit", KHR_MATERIALS_VOLUME: "KHR_materials_volume", KHR_TEXTURE_BASISU: "KHR_texture_basisu", KHR_TEXTURE_TRANSFORM: "KHR_texture_transform", KHR_MESH_QUANTIZATION: "KHR_mesh_quantization", KHR_MATERIALS_EMISSIVE_STRENGTH: "KHR_materials_emissive_strength", EXT_TEXTURE_WEBP: "EXT_texture_webp", EXT_MESHOPT_COMPRESSION: "EXT_meshopt_compression" }; class GLTFLightsExtension { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL; this.cache = { refs: {}, uses: {} }; } _markDefs() { const parser = this.parser; const nodeDefs = this.parser.json.nodes || []; for (let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) { const nodeDef = nodeDefs[nodeIndex]; if (nodeDef.extensions && nodeDef.extensions[this.name] && nodeDef.extensions[this.name].light !== void 0) { parser._addNodeRef(this.cache, nodeDef.extensions[this.name].light); } } } _loadLight(lightIndex) { const parser = this.parser; const cacheKey = "light:" + lightIndex; let dependency = parser.cache.get(cacheKey); if (dependency) return dependency; const json = parser.json; const extensions = json.extensions && json.extensions[this.name] || {}; const lightDefs = extensions.lights || []; const lightDef = lightDefs[lightIndex]; let lightNode; const color = new Color(16777215); if (lightDef.color !== void 0) color.fromArray(lightDef.color); const range = lightDef.range !== void 0 ? lightDef.range : 0; switch (lightDef.type) { case "directional": lightNode = new DirectionalLight$1(color); lightNode.target.position.set(0, 0, -1); lightNode.add(lightNode.target); break; case "point": lightNode = new PointLight$1(color); lightNode.distance = range; break; case "spot": lightNode = new SpotLight$1(color); lightNode.distance = range; lightDef.spot = lightDef.spot || {}; lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== void 0 ? lightDef.spot.innerConeAngle : 0; lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== void 0 ? lightDef.spot.outerConeAngle : Math.PI / 4; lightNode.angle = lightDef.spot.outerConeAngle; lightNode.penumbra = 1 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle; lightNode.target.position.set(0, 0, -1); lightNode.add(lightNode.target); break; default: throw new Error("THREE.GLTFLoader: Unexpected light type: " + lightDef.type); } lightNode.position.set(0, 0, 0); lightNode.decay = 2; if (lightDef.intensity !== void 0) lightNode.intensity = lightDef.intensity; lightNode.name = parser.createUniqueName(lightDef.name || "light_" + lightIndex); dependency = Promise.resolve(lightNode); parser.cache.add(cacheKey, dependency); return dependency; } createNodeAttachment(nodeIndex) { const self2 = this; const parser = this.parser; const json = parser.json; const nodeDef = json.nodes[nodeIndex]; const lightDef = nodeDef.extensions && nodeDef.extensions[this.name] || {}; const lightIndex = lightDef.light; if (lightIndex === void 0) return null; return this._loadLight(lightIndex).then(function(light) { return parser._getNodeRef(self2.cache, lightIndex, light); }); } } class GLTFMaterialsUnlitExtension { constructor() { this.name = EXTENSIONS.KHR_MATERIALS_UNLIT; } getMaterialType() { return MeshBasicMaterial; } extendParams(materialParams, materialDef, parser) { const pending = []; materialParams.color = new Color(1, 1, 1); materialParams.opacity = 1; const metallicRoughness = materialDef.pbrMetallicRoughness; if (metallicRoughness) { if (Array.isArray(metallicRoughness.baseColorFactor)) { const array = metallicRoughness.baseColorFactor; materialParams.color.fromArray(array); materialParams.opacity = array[3]; } if (metallicRoughness.baseColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "map", metallicRoughness.baseColorTexture, sRGBEncoding)); } } return Promise.all(pending); } } class GLTFMaterialsEmissiveStrengthExtension { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_EMISSIVE_STRENGTH; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const emissiveStrength = materialDef.extensions[this.name].emissiveStrength; if (emissiveStrength !== void 0) { materialParams.emissiveIntensity = emissiveStrength; } return Promise.resolve(); } } class GLTFMaterialsClearcoatExtension { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; if (extension.clearcoatFactor !== void 0) { materialParams.clearcoat = extension.clearcoatFactor; } if (extension.clearcoatTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "clearcoatMap", extension.clearcoatTexture)); } if (extension.clearcoatRoughnessFactor !== void 0) { materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor; } if (extension.clearcoatRoughnessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "clearcoatRoughnessMap", extension.clearcoatRoughnessTexture)); } if (extension.clearcoatNormalTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "clearcoatNormalMap", extension.clearcoatNormalTexture)); if (extension.clearcoatNormalTexture.scale !== void 0) { const scale = extension.clearcoatNormalTexture.scale; materialParams.clearcoatNormalScale = new Vector2(scale, scale); } } return Promise.all(pending); } } class GLTFMaterialsSheenExtension { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_SHEEN; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; materialParams.sheenColor = new Color(0, 0, 0); materialParams.sheenRoughness = 0; materialParams.sheen = 1; const extension = materialDef.extensions[this.name]; if (extension.sheenColorFactor !== void 0) { materialParams.sheenColor.fromArray(extension.sheenColorFactor); } if (extension.sheenRoughnessFactor !== void 0) { materialParams.sheenRoughness = extension.sheenRoughnessFactor; } if (extension.sheenColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "sheenColorMap", extension.sheenColorTexture, sRGBEncoding)); } if (extension.sheenRoughnessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "sheenRoughnessMap", extension.sheenRoughnessTexture)); } return Promise.all(pending); } } class GLTFMaterialsTransmissionExtension { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_TRANSMISSION; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; if (extension.transmissionFactor !== void 0) { materialParams.transmission = extension.transmissionFactor; } if (extension.transmissionTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "transmissionMap", extension.transmissionTexture)); } return Promise.all(pending); } } class GLTFMaterialsVolumeExtension { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_VOLUME; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; materialParams.thickness = extension.thicknessFactor !== void 0 ? extension.thicknessFactor : 0; if (extension.thicknessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "thicknessMap", extension.thicknessTexture)); } materialParams.attenuationDistance = extension.attenuationDistance || 0; const colorArray = extension.attenuationColor || [1, 1, 1]; materialParams.attenuationColor = new Color(colorArray[0], colorArray[1], colorArray[2]); return Promise.all(pending); } } class GLTFMaterialsIorExtension { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_IOR; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const extension = materialDef.extensions[this.name]; materialParams.ior = extension.ior !== void 0 ? extension.ior : 1.5; return Promise.resolve(); } } class GLTFMaterialsSpecularExtension { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_MATERIALS_SPECULAR; } getMaterialType(materialIndex) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) return null; return MeshPhysicalMaterial; } extendMaterialParams(materialIndex, materialParams) { const parser = this.parser; const materialDef = parser.json.materials[materialIndex]; if (!materialDef.extensions || !materialDef.extensions[this.name]) { return Promise.resolve(); } const pending = []; const extension = materialDef.extensions[this.name]; materialParams.specularIntensity = extension.specularFactor !== void 0 ? extension.specularFactor : 1; if (extension.specularTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "specularIntensityMap", extension.specularTexture)); } const colorArray = extension.specularColorFactor || [1, 1, 1]; materialParams.specularColor = new Color(colorArray[0], colorArray[1], colorArray[2]); if (extension.specularColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "specularColorMap", extension.specularColorTexture, sRGBEncoding)); } return Promise.all(pending); } } class GLTFTextureBasisUExtension { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.KHR_TEXTURE_BASISU; } loadTexture(textureIndex) { const parser = this.parser; const json = parser.json; const textureDef = json.textures[textureIndex]; if (!textureDef.extensions || !textureDef.extensions[this.name]) { return null; } const extension = textureDef.extensions[this.name]; const loader2 = parser.options.ktx2Loader; if (!loader2) { if (json.extensionsRequired && json.extensionsRequired.indexOf(this.name) >= 0) { throw new Error("THREE.GLTFLoader: setKTX2Loader must be called before loading KTX2 textures"); } else { return null; } } return parser.loadTextureImage(textureIndex, extension.source, loader2); } } class GLTFTextureWebPExtension { constructor(parser) { this.parser = parser; this.name = EXTENSIONS.EXT_TEXTURE_WEBP; this.isSupported = null; } loadTexture(textureIndex) { const name = this.name; const parser = this.parser; const json = parser.json; const textureDef = json.textures[textureIndex]; if (!textureDef.extensions || !textureDef.extensions[name]) { return null; } const extension = textureDef.extensions[name]; const source = json.images[extension.source]; let loader2 = parser.textureLoader; if (source.uri) { const handler = parser.options.manager.getHandler(source.uri); if (handler !== null) loader2 = handler; } return this.detectSupport().then(function(isSupported) { if (isSupported) return parser.loadTextureImage(textureIndex, extension.source, loader2); if (json.extensionsRequired && json.extensionsRequired.indexOf(name) >= 0) { throw new Error("THREE.GLTFLoader: WebP required by asset but unsupported."); } return parser.loadTexture(textureIndex); }); } detectSupport() { if (!this.isSupported) { this.isSupported = new Promise(function(resolve) { const image = new Image(); image.src = ""; image.onload = image.onerror = function() { resolve(image.height === 1); }; }); } return this.isSupported; } } class GLTFMeshoptCompression { constructor(parser) { this.name = EXTENSIONS.EXT_MESHOPT_COMPRESSION; this.parser = parser; } loadBufferView(index) { const json = this.parser.json; const bufferView = json.bufferViews[index]; if (bufferView.extensions && bufferView.extensions[this.name]) { const extensionDef = bufferView.extensions[this.name]; const buffer = this.parser.getDependency("buffer", extensionDef.buffer); const decoder = this.parser.options.meshoptDecoder; if (!decoder || !decoder.supported) { if (json.extensionsRequired && json.extensionsRequired.indexOf(this.name) >= 0) { throw new Error("THREE.GLTFLoader: setMeshoptDecoder must be called before loading compressed files"); } else { return null; } } return Promise.all([buffer, decoder.ready]).then(function(res) { const byteOffset = extensionDef.byteOffset || 0; const byteLength = extensionDef.byteLength || 0; const count = extensionDef.count; const stride = extensionDef.byteStride; const result = new ArrayBuffer(count * stride); const source = new Uint8Array(res[0], byteOffset, byteLength); decoder.decodeGltfBuffer(new Uint8Array(result), count, stride, source, extensionDef.mode, extensionDef.filter); return result; }); } else { return null; } } } const BINARY_EXTENSION_HEADER_MAGIC = "glTF"; const BINARY_EXTENSION_HEADER_LENGTH = 12; const BINARY_EXTENSION_CHUNK_TYPES = { JSON: 1313821514, BIN: 5130562 }; class GLTFBinaryExtension { constructor(data) { this.name = EXTENSIONS.KHR_BINARY_GLTF; this.content = null; this.body = null; const headerView = new DataView(data, 0, BINARY_EXTENSION_HEADER_LENGTH); this.header = { magic: LoaderUtils.decodeText(new Uint8Array(data.slice(0, 4))), version: headerView.getUint32(4, true), length: headerView.getUint32(8, true) }; if (this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC) { throw new Error("THREE.GLTFLoader: Unsupported glTF-Binary header."); } else if (this.header.version < 2) { throw new Error("THREE.GLTFLoader: Legacy binary file detected."); } const chunkContentsLength = this.header.length - BINARY_EXTENSION_HEADER_LENGTH; const chunkView = new DataView(data, BINARY_EXTENSION_HEADER_LENGTH); let chunkIndex = 0; while (chunkIndex < chunkContentsLength) { const chunkLength = chunkView.getUint32(chunkIndex, true); chunkIndex += 4; const chunkType = chunkView.getUint32(chunkIndex, true); chunkIndex += 4; if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON) { const contentArray = new Uint8Array(data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength); this.content = LoaderUtils.decodeText(contentArray); } else if (chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN) { const byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex; this.body = data.slice(byteOffset, byteOffset + chunkLength); } chunkIndex += chunkLength; } if (this.content === null) { throw new Error("THREE.GLTFLoader: JSON content not found."); } } } class GLTFDracoMeshCompressionExtension { constructor(json, dracoLoader2) { if (!dracoLoader2) { throw new Error("THREE.GLTFLoader: No DRACOLoader instance provided."); } this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION; this.json = json; this.dracoLoader = dracoLoader2; this.dracoLoader.preload(); } decodePrimitive(primitive, parser) { const json = this.json; const dracoLoader2 = this.dracoLoader; const bufferViewIndex = primitive.extensions[this.name].bufferView; const gltfAttributeMap = primitive.extensions[this.name].attributes; const threeAttributeMap = {}; const attributeNormalizedMap = {}; const attributeTypeMap = {}; for (const attributeName in gltfAttributeMap) { const threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase(); threeAttributeMap[threeAttributeName] = gltfAttributeMap[attributeName]; } for (const attributeName in primitive.attributes) { const threeAttributeName = ATTRIBUTES[attributeName] || attributeName.toLowerCase(); if (gltfAttributeMap[attributeName] !== void 0) { const accessorDef = json.accessors[primitive.attributes[attributeName]]; const componentType = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; attributeTypeMap[threeAttributeName] = componentType; attributeNormalizedMap[threeAttributeName] = accessorDef.normalized === true; } } return parser.getDependency("bufferView", bufferViewIndex).then(function(bufferView) { return new Promise(function(resolve) { dracoLoader2.decodeDracoFile(bufferView, function(geometry) { for (const attributeName in geometry.attributes) { const attribute = geometry.attributes[attributeName]; const normalized = attributeNormalizedMap[attributeName]; if (normalized !== void 0) attribute.normalized = normalized; } resolve(geometry); }, threeAttributeMap, attributeTypeMap); }); }); } } class GLTFTextureTransformExtension { constructor() { this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM; } extendTexture(texture, transform) { if (transform.texCoord !== void 0) { console.warn('THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.'); } if (transform.offset === void 0 && transform.rotation === void 0 && transform.scale === void 0) { return texture; } texture = texture.clone(); if (transform.offset !== void 0) { texture.offset.fromArray(transform.offset); } if (transform.rotation !== void 0) { texture.rotation = transform.rotation; } if (transform.scale !== void 0) { texture.repeat.fromArray(transform.scale); } texture.needsUpdate = true; return texture; } } class GLTFMeshStandardSGMaterial extends MeshStandardMaterial { constructor(params) { super(); this.isGLTFSpecularGlossinessMaterial = true; const specularMapParsFragmentChunk = [ "#ifdef USE_SPECULARMAP", " uniform sampler2D specularMap;", "#endif" ].join("\n"); const glossinessMapParsFragmentChunk = [ "#ifdef USE_GLOSSINESSMAP", " uniform sampler2D glossinessMap;", "#endif" ].join("\n"); const specularMapFragmentChunk = [ "vec3 specularFactor = specular;", "#ifdef USE_SPECULARMAP", " vec4 texelSpecular = texture2D( specularMap, vUv );", " // reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture", " specularFactor *= texelSpecular.rgb;", "#endif" ].join("\n"); const glossinessMapFragmentChunk = [ "float glossinessFactor = glossiness;", "#ifdef USE_GLOSSINESSMAP", " vec4 texelGlossiness = texture2D( glossinessMap, vUv );", " // reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture", " glossinessFactor *= texelGlossiness.a;", "#endif" ].join("\n"); const lightPhysicalFragmentChunk = [ "PhysicalMaterial material;", "material.diffuseColor = diffuseColor.rgb * ( 1. - max( specularFactor.r, max( specularFactor.g, specularFactor.b ) ) );", "vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );", "float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );", "material.roughness = max( 1.0 - glossinessFactor, 0.0525 ); // 0.0525 corresponds to the base mip of a 256 cubemap.", "material.roughness += geometryRoughness;", "material.roughness = min( material.roughness, 1.0 );", "material.specularColor = specularFactor;" ].join("\n"); const uniforms = { specular: { value: new Color().setHex(16777215) }, glossiness: { value: 1 }, specularMap: { value: null }, glossinessMap: { value: null } }; this._extraUniforms = uniforms; this.onBeforeCompile = function(shader) { for (const uniformName in uniforms) { shader.uniforms[uniformName] = uniforms[uniformName]; } shader.fragmentShader = shader.fragmentShader.replace("uniform float roughness;", "uniform vec3 specular;").replace("uniform float metalness;", "uniform float glossiness;").replace("#include ", specularMapParsFragmentChunk).replace("#include ", glossinessMapParsFragmentChunk).replace("#include ", specularMapFragmentChunk).replace("#include ", glossinessMapFragmentChunk).replace("#include ", lightPhysicalFragmentChunk); }; Object.defineProperties(this, { specular: { get: function() { return uniforms.specular.value; }, set: function(v) { uniforms.specular.value = v; } }, specularMap: { get: function() { return uniforms.specularMap.value; }, set: function(v) { uniforms.specularMap.value = v; if (v) { this.defines.USE_SPECULARMAP = ""; } else { delete this.defines.USE_SPECULARMAP; } } }, glossiness: { get: function() { return uniforms.glossiness.value; }, set: function(v) { uniforms.glossiness.value = v; } }, glossinessMap: { get: function() { return uniforms.glossinessMap.value; }, set: function(v) { uniforms.glossinessMap.value = v; if (v) { this.defines.USE_GLOSSINESSMAP = ""; this.defines.USE_UV = ""; } else { delete this.defines.USE_GLOSSINESSMAP; delete this.defines.USE_UV; } } } }); delete this.metalness; delete this.roughness; delete this.metalnessMap; delete this.roughnessMap; this.setValues(params); } copy(source) { super.copy(source); this.specularMap = source.specularMap; this.specular.copy(source.specular); this.glossinessMap = source.glossinessMap; this.glossiness = source.glossiness; delete this.metalness; delete this.roughness; delete this.metalnessMap; delete this.roughnessMap; return this; } } class GLTFMaterialsPbrSpecularGlossinessExtension { constructor() { this.name = EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS; this.specularGlossinessParams = [ "color", "map", "lightMap", "lightMapIntensity", "aoMap", "aoMapIntensity", "emissive", "emissiveIntensity", "emissiveMap", "bumpMap", "bumpScale", "normalMap", "normalMapType", "displacementMap", "displacementScale", "displacementBias", "specularMap", "specular", "glossinessMap", "glossiness", "alphaMap", "envMap", "envMapIntensity" ]; } getMaterialType() { return GLTFMeshStandardSGMaterial; } extendParams(materialParams, materialDef, parser) { const pbrSpecularGlossiness = materialDef.extensions[this.name]; materialParams.color = new Color(1, 1, 1); materialParams.opacity = 1; const pending = []; if (Array.isArray(pbrSpecularGlossiness.diffuseFactor)) { const array = pbrSpecularGlossiness.diffuseFactor; materialParams.color.fromArray(array); materialParams.opacity = array[3]; } if (pbrSpecularGlossiness.diffuseTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "map", pbrSpecularGlossiness.diffuseTexture, sRGBEncoding)); } materialParams.emissive = new Color(0, 0, 0); materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== void 0 ? pbrSpecularGlossiness.glossinessFactor : 1; materialParams.specular = new Color(1, 1, 1); if (Array.isArray(pbrSpecularGlossiness.specularFactor)) { materialParams.specular.fromArray(pbrSpecularGlossiness.specularFactor); } if (pbrSpecularGlossiness.specularGlossinessTexture !== void 0) { const specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture; pending.push(parser.assignTexture(materialParams, "glossinessMap", specGlossMapDef)); pending.push(parser.assignTexture(materialParams, "specularMap", specGlossMapDef, sRGBEncoding)); } return Promise.all(pending); } createMaterial(materialParams) { const material = new GLTFMeshStandardSGMaterial(materialParams); material.fog = true; material.color = materialParams.color; material.map = materialParams.map === void 0 ? null : materialParams.map; material.lightMap = null; material.lightMapIntensity = 1; material.aoMap = materialParams.aoMap === void 0 ? null : materialParams.aoMap; material.aoMapIntensity = 1; material.emissive = materialParams.emissive; material.emissiveIntensity = materialParams.emissiveIntensity === void 0 ? 1 : materialParams.emissiveIntensity; material.emissiveMap = materialParams.emissiveMap === void 0 ? null : materialParams.emissiveMap; material.bumpMap = materialParams.bumpMap === void 0 ? null : materialParams.bumpMap; material.bumpScale = 1; material.normalMap = materialParams.normalMap === void 0 ? null : materialParams.normalMap; material.normalMapType = TangentSpaceNormalMap; if (materialParams.normalScale) material.normalScale = materialParams.normalScale; material.displacementMap = null; material.displacementScale = 1; material.displacementBias = 0; material.specularMap = materialParams.specularMap === void 0 ? null : materialParams.specularMap; material.specular = materialParams.specular; material.glossinessMap = materialParams.glossinessMap === void 0 ? null : materialParams.glossinessMap; material.glossiness = materialParams.glossiness; material.alphaMap = null; material.envMap = materialParams.envMap === void 0 ? null : materialParams.envMap; material.envMapIntensity = 1; return material; } } class GLTFMeshQuantizationExtension { constructor() { this.name = EXTENSIONS.KHR_MESH_QUANTIZATION; } } class GLTFCubicSplineInterpolant extends Interpolant { constructor(parameterPositions, sampleValues, sampleSize, resultBuffer) { super(parameterPositions, sampleValues, sampleSize, resultBuffer); } copySampleValue_(index) { const result = this.resultBuffer, values = this.sampleValues, valueSize = this.valueSize, offset = index * valueSize * 3 + valueSize; for (let i = 0; i !== valueSize; i++) { result[i] = values[offset + i]; } return result; } } GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_; GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_; GLTFCubicSplineInterpolant.prototype.interpolate_ = function(i1, t0, t, t1) { const result = this.resultBuffer; const values = this.sampleValues; const stride = this.valueSize; const stride2 = stride * 2; const stride3 = stride * 3; const td = t1 - t0; const p = (t - t0) / td; const pp = p * p; const ppp = pp * p; const offset1 = i1 * stride3; const offset0 = offset1 - stride3; const s2 = -2 * ppp + 3 * pp; const s3 = ppp - pp; const s0 = 1 - s2; const s1 = s3 - pp + p; for (let i = 0; i !== stride; i++) { const p0 = values[offset0 + i + stride]; const m0 = values[offset0 + i + stride2] * td; const p1 = values[offset1 + i + stride]; const m1 = values[offset1 + i] * td; result[i] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1; } return result; }; const _q = new Quaternion(); class GLTFCubicSplineQuaternionInterpolant extends GLTFCubicSplineInterpolant { interpolate_(i1, t0, t, t1) { const result = super.interpolate_(i1, t0, t, t1); _q.fromArray(result).normalize().toArray(result); return result; } } const WEBGL_CONSTANTS = { FLOAT: 5126, FLOAT_MAT3: 35675, FLOAT_MAT4: 35676, FLOAT_VEC2: 35664, FLOAT_VEC3: 35665, FLOAT_VEC4: 35666, LINEAR: 9729, REPEAT: 10497, SAMPLER_2D: 35678, POINTS: 0, LINES: 1, LINE_LOOP: 2, LINE_STRIP: 3, TRIANGLES: 4, TRIANGLE_STRIP: 5, TRIANGLE_FAN: 6, UNSIGNED_BYTE: 5121, UNSIGNED_SHORT: 5123 }; const WEBGL_COMPONENT_TYPES = { 5120: Int8Array, 5121: Uint8Array, 5122: Int16Array, 5123: Uint16Array, 5125: Uint32Array, 5126: Float32Array }; const WEBGL_FILTERS = { 9728: NearestFilter, 9729: LinearFilter, 9984: NearestMipmapNearestFilter, 9985: LinearMipmapNearestFilter, 9986: NearestMipmapLinearFilter, 9987: LinearMipmapLinearFilter }; const WEBGL_WRAPPINGS = { 33071: ClampToEdgeWrapping, 33648: MirroredRepeatWrapping, 10497: RepeatWrapping }; const WEBGL_TYPE_SIZES = { "SCALAR": 1, "VEC2": 2, "VEC3": 3, "VEC4": 4, "MAT2": 4, "MAT3": 9, "MAT4": 16 }; const ATTRIBUTES = { POSITION: "position", NORMAL: "normal", TANGENT: "tangent", TEXCOORD_0: "uv", TEXCOORD_1: "uv2", COLOR_0: "color", WEIGHTS_0: "skinWeight", JOINTS_0: "skinIndex" }; const PATH_PROPERTIES = { scale: "scale", translation: "position", rotation: "quaternion", weights: "morphTargetInfluences" }; const INTERPOLATION = { CUBICSPLINE: void 0, LINEAR: InterpolateLinear, STEP: InterpolateDiscrete }; const ALPHA_MODES = { OPAQUE: "OPAQUE", MASK: "MASK", BLEND: "BLEND" }; function createDefaultMaterial(cache2) { if (cache2["DefaultMaterial"] === void 0) { cache2["DefaultMaterial"] = new MeshStandardMaterial({ color: 16777215, emissive: 0, metalness: 1, roughness: 1, transparent: false, depthTest: true, side: FrontSide }); } return cache2["DefaultMaterial"]; } function addUnknownExtensionsToUserData(knownExtensions, object, objectDef) { for (const name in objectDef.extensions) { if (knownExtensions[name] === void 0) { object.userData.gltfExtensions = object.userData.gltfExtensions || {}; object.userData.gltfExtensions[name] = objectDef.extensions[name]; } } } function assignExtrasToUserData(object, gltfDef) { if (gltfDef.extras !== void 0) { if (typeof gltfDef.extras === "object") { Object.assign(object.userData, gltfDef.extras); } else { console.warn("THREE.GLTFLoader: Ignoring primitive type .extras, " + gltfDef.extras); } } } function addMorphTargets(geometry, targets, parser) { let hasMorphPosition = false; let hasMorphNormal = false; let hasMorphColor = false; for (let i = 0, il = targets.length; i < il; i++) { const target = targets[i]; if (target.POSITION !== void 0) hasMorphPosition = true; if (target.NORMAL !== void 0) hasMorphNormal = true; if (target.COLOR_0 !== void 0) hasMorphColor = true; if (hasMorphPosition && hasMorphNormal && hasMorphColor) break; } if (!hasMorphPosition && !hasMorphNormal && !hasMorphColor) return Promise.resolve(geometry); const pendingPositionAccessors = []; const pendingNormalAccessors = []; const pendingColorAccessors = []; for (let i = 0, il = targets.length; i < il; i++) { const target = targets[i]; if (hasMorphPosition) { const pendingAccessor = target.POSITION !== void 0 ? parser.getDependency("accessor", target.POSITION) : geometry.attributes.position; pendingPositionAccessors.push(pendingAccessor); } if (hasMorphNormal) { const pendingAccessor = target.NORMAL !== void 0 ? parser.getDependency("accessor", target.NORMAL) : geometry.attributes.normal; pendingNormalAccessors.push(pendingAccessor); } if (hasMorphColor) { const pendingAccessor = target.COLOR_0 !== void 0 ? parser.getDependency("accessor", target.COLOR_0) : geometry.attributes.color; pendingColorAccessors.push(pendingAccessor); } } return Promise.all([ Promise.all(pendingPositionAccessors), Promise.all(pendingNormalAccessors), Promise.all(pendingColorAccessors) ]).then(function(accessors) { const morphPositions = accessors[0]; const morphNormals = accessors[1]; const morphColors = accessors[2]; if (hasMorphPosition) geometry.morphAttributes.position = morphPositions; if (hasMorphNormal) geometry.morphAttributes.normal = morphNormals; if (hasMorphColor) geometry.morphAttributes.color = morphColors; geometry.morphTargetsRelative = true; return geometry; }); } function updateMorphTargets(mesh, meshDef) { mesh.updateMorphTargets(); if (meshDef.weights !== void 0) { for (let i = 0, il = meshDef.weights.length; i < il; i++) { mesh.morphTargetInfluences[i] = meshDef.weights[i]; } } if (meshDef.extras && Array.isArray(meshDef.extras.targetNames)) { const targetNames = meshDef.extras.targetNames; if (mesh.morphTargetInfluences.length === targetNames.length) { mesh.morphTargetDictionary = {}; for (let i = 0, il = targetNames.length; i < il; i++) { mesh.morphTargetDictionary[targetNames[i]] = i; } } else { console.warn("THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names."); } } } function createPrimitiveKey(primitiveDef) { const dracoExtension = primitiveDef.extensions && primitiveDef.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]; let geometryKey; if (dracoExtension) { geometryKey = "draco:" + dracoExtension.bufferView + ":" + dracoExtension.indices + ":" + createAttributesKey(dracoExtension.attributes); } else { geometryKey = primitiveDef.indices + ":" + createAttributesKey(primitiveDef.attributes) + ":" + primitiveDef.mode; } return geometryKey; } function createAttributesKey(attributes) { let attributesKey = ""; const keys = Object.keys(attributes).sort(); for (let i = 0, il = keys.length; i < il; i++) { attributesKey += keys[i] + ":" + attributes[keys[i]] + ";"; } return attributesKey; } function getNormalizedComponentScale(constructor) { switch (constructor) { case Int8Array: return 1 / 127; case Uint8Array: return 1 / 255; case Int16Array: return 1 / 32767; case Uint16Array: return 1 / 65535; default: throw new Error("THREE.GLTFLoader: Unsupported normalized accessor component type."); } } function getImageURIMimeType(uri) { if (uri.search(/\.jpe?g($|\?)/i) > 0 || uri.search(/^data\:image\/jpeg/) === 0) return "image/jpeg"; if (uri.search(/\.webp($|\?)/i) > 0 || uri.search(/^data\:image\/webp/) === 0) return "image/webp"; return "image/png"; } class GLTFParser { constructor(json = {}, options = {}) { this.json = json; this.extensions = {}; this.plugins = {}; this.options = options; this.cache = new GLTFRegistry(); this.associations = /* @__PURE__ */ new Map(); this.primitiveCache = {}; this.meshCache = { refs: {}, uses: {} }; this.cameraCache = { refs: {}, uses: {} }; this.lightCache = { refs: {}, uses: {} }; this.sourceCache = {}; this.textureCache = {}; this.nodeNamesUsed = {}; const isSafari = /^((?!chrome|android).)*safari/i.test(navigator.userAgent) === true; const isFirefox = navigator.userAgent.indexOf("Firefox") > -1; const firefoxVersion = isFirefox ? navigator.userAgent.match(/Firefox\/([0-9]+)\./)[1] : -1; if (typeof createImageBitmap === "undefined" || isSafari || isFirefox && firefoxVersion < 98) { this.textureLoader = new TextureLoader(this.options.manager); } else { this.textureLoader = new ImageBitmapLoader(this.options.manager); } this.textureLoader.setCrossOrigin(this.options.crossOrigin); this.textureLoader.setRequestHeader(this.options.requestHeader); this.fileLoader = new FileLoader(this.options.manager); this.fileLoader.setResponseType("arraybuffer"); if (this.options.crossOrigin === "use-credentials") { this.fileLoader.setWithCredentials(true); } } setExtensions(extensions) { this.extensions = extensions; } setPlugins(plugins) { this.plugins = plugins; } parse(onLoad, onError) { const parser = this; const json = this.json; const extensions = this.extensions; this.cache.removeAll(); this._invokeAll(function(ext) { return ext._markDefs && ext._markDefs(); }); Promise.all(this._invokeAll(function(ext) { return ext.beforeRoot && ext.beforeRoot(); })).then(function() { return Promise.all([ parser.getDependencies("scene"), parser.getDependencies("animation"), parser.getDependencies("camera") ]); }).then(function(dependencies) { const result = { scene: dependencies[0][json.scene || 0], scenes: dependencies[0], animations: dependencies[1], cameras: dependencies[2], asset: json.asset, parser, userData: {} }; addUnknownExtensionsToUserData(extensions, result, json); assignExtrasToUserData(result, json); Promise.all(parser._invokeAll(function(ext) { return ext.afterRoot && ext.afterRoot(result); })).then(function() { onLoad(result); }); }).catch(onError); } _markDefs() { const nodeDefs = this.json.nodes || []; const skinDefs = this.json.skins || []; const meshDefs = this.json.meshes || []; for (let skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex++) { const joints = skinDefs[skinIndex].joints; for (let i = 0, il = joints.length; i < il; i++) { nodeDefs[joints[i]].isBone = true; } } for (let nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex++) { const nodeDef = nodeDefs[nodeIndex]; if (nodeDef.mesh !== void 0) { this._addNodeRef(this.meshCache, nodeDef.mesh); if (nodeDef.skin !== void 0) { meshDefs[nodeDef.mesh].isSkinnedMesh = true; } } if (nodeDef.camera !== void 0) { this._addNodeRef(this.cameraCache, nodeDef.camera); } } } _addNodeRef(cache2, index) { if (index === void 0) return; if (cache2.refs[index] === void 0) { cache2.refs[index] = cache2.uses[index] = 0; } cache2.refs[index]++; } _getNodeRef(cache2, index, object) { if (cache2.refs[index] <= 1) return object; const ref = object.clone(); const updateMappings = (original, clone) => { const mappings = this.associations.get(original); if (mappings != null) { this.associations.set(clone, mappings); } for (const [i, child] of original.children.entries()) { updateMappings(child, clone.children[i]); } }; updateMappings(object, ref); ref.name += "_instance_" + cache2.uses[index]++; return ref; } _invokeOne(func) { const extensions = Object.values(this.plugins); extensions.push(this); for (let i = 0; i < extensions.length; i++) { const result = func(extensions[i]); if (result) return result; } return null; } _invokeAll(func) { const extensions = Object.values(this.plugins); extensions.unshift(this); const pending = []; for (let i = 0; i < extensions.length; i++) { const result = func(extensions[i]); if (result) pending.push(result); } return pending; } getDependency(type, index) { const cacheKey = type + ":" + index; let dependency = this.cache.get(cacheKey); if (!dependency) { switch (type) { case "scene": dependency = this.loadScene(index); break; case "node": dependency = this.loadNode(index); break; case "mesh": dependency = this._invokeOne(function(ext) { return ext.loadMesh && ext.loadMesh(index); }); break; case "accessor": dependency = this.loadAccessor(index); break; case "bufferView": dependency = this._invokeOne(function(ext) { return ext.loadBufferView && ext.loadBufferView(index); }); break; case "buffer": dependency = this.loadBuffer(index); break; case "material": dependency = this._invokeOne(function(ext) { return ext.loadMaterial && ext.loadMaterial(index); }); break; case "texture": dependency = this._invokeOne(function(ext) { return ext.loadTexture && ext.loadTexture(index); }); break; case "skin": dependency = this.loadSkin(index); break; case "animation": dependency = this._invokeOne(function(ext) { return ext.loadAnimation && ext.loadAnimation(index); }); break; case "camera": dependency = this.loadCamera(index); break; default: throw new Error("Unknown type: " + type); } this.cache.add(cacheKey, dependency); } return dependency; } getDependencies(type) { let dependencies = this.cache.get(type); if (!dependencies) { const parser = this; const defs = this.json[type + (type === "mesh" ? "es" : "s")] || []; dependencies = Promise.all(defs.map(function(def, index) { return parser.getDependency(type, index); })); this.cache.add(type, dependencies); } return dependencies; } loadBuffer(bufferIndex) { const bufferDef = this.json.buffers[bufferIndex]; const loader2 = this.fileLoader; if (bufferDef.type && bufferDef.type !== "arraybuffer") { throw new Error("THREE.GLTFLoader: " + bufferDef.type + " buffer type is not supported."); } if (bufferDef.uri === void 0 && bufferIndex === 0) { return Promise.resolve(this.extensions[EXTENSIONS.KHR_BINARY_GLTF].body); } const options = this.options; return new Promise(function(resolve, reject) { loader2.load(LoaderUtils.resolveURL(bufferDef.uri, options.path), resolve, void 0, function() { reject(new Error('THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".')); }); }); } loadBufferView(bufferViewIndex) { const bufferViewDef = this.json.bufferViews[bufferViewIndex]; return this.getDependency("buffer", bufferViewDef.buffer).then(function(buffer) { const byteLength = bufferViewDef.byteLength || 0; const byteOffset = bufferViewDef.byteOffset || 0; return buffer.slice(byteOffset, byteOffset + byteLength); }); } loadAccessor(accessorIndex) { const parser = this; const json = this.json; const accessorDef = this.json.accessors[accessorIndex]; if (accessorDef.bufferView === void 0 && accessorDef.sparse === void 0) { return Promise.resolve(null); } const pendingBufferViews = []; if (accessorDef.bufferView !== void 0) { pendingBufferViews.push(this.getDependency("bufferView", accessorDef.bufferView)); } else { pendingBufferViews.push(null); } if (accessorDef.sparse !== void 0) { pendingBufferViews.push(this.getDependency("bufferView", accessorDef.sparse.indices.bufferView)); pendingBufferViews.push(this.getDependency("bufferView", accessorDef.sparse.values.bufferView)); } return Promise.all(pendingBufferViews).then(function(bufferViews) { const bufferView = bufferViews[0]; const itemSize = WEBGL_TYPE_SIZES[accessorDef.type]; const TypedArray = WEBGL_COMPONENT_TYPES[accessorDef.componentType]; const elementBytes = TypedArray.BYTES_PER_ELEMENT; const itemBytes = elementBytes * itemSize; const byteOffset = accessorDef.byteOffset || 0; const byteStride = accessorDef.bufferView !== void 0 ? json.bufferViews[accessorDef.bufferView].byteStride : void 0; const normalized = accessorDef.normalized === true; let array, bufferAttribute; if (byteStride && byteStride !== itemBytes) { const ibSlice = Math.floor(byteOffset / byteStride); const ibCacheKey = "InterleavedBuffer:" + accessorDef.bufferView + ":" + accessorDef.componentType + ":" + ibSlice + ":" + accessorDef.count; let ib = parser.cache.get(ibCacheKey); if (!ib) { array = new TypedArray(bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes); ib = new InterleavedBuffer(array, byteStride / elementBytes); parser.cache.add(ibCacheKey, ib); } bufferAttribute = new InterleavedBufferAttribute(ib, itemSize, byteOffset % byteStride / elementBytes, normalized); } else { if (bufferView === null) { array = new TypedArray(accessorDef.count * itemSize); } else { array = new TypedArray(bufferView, byteOffset, accessorDef.count * itemSize); } bufferAttribute = new BufferAttribute(array, itemSize, normalized); } if (accessorDef.sparse !== void 0) { const itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR; const TypedArrayIndices = WEBGL_COMPONENT_TYPES[accessorDef.sparse.indices.componentType]; const byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0; const byteOffsetValues = accessorDef.sparse.values.byteOffset || 0; const sparseIndices = new TypedArrayIndices(bufferViews[1], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices); const sparseValues = new TypedArray(bufferViews[2], byteOffsetValues, accessorDef.sparse.count * itemSize); if (bufferView !== null) { bufferAttribute = new BufferAttribute(bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized); } for (let i = 0, il = sparseIndices.length; i < il; i++) { const index = sparseIndices[i]; bufferAttribute.setX(index, sparseValues[i * itemSize]); if (itemSize >= 2) bufferAttribute.setY(index, sparseValues[i * itemSize + 1]); if (itemSize >= 3) bufferAttribute.setZ(index, sparseValues[i * itemSize + 2]); if (itemSize >= 4) bufferAttribute.setW(index, sparseValues[i * itemSize + 3]); if (itemSize >= 5) throw new Error("THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute."); } } return bufferAttribute; }); } loadTexture(textureIndex) { const json = this.json; const options = this.options; const textureDef = json.textures[textureIndex]; const sourceIndex = textureDef.source; const sourceDef = json.images[sourceIndex]; let loader2 = this.textureLoader; if (sourceDef.uri) { const handler = options.manager.getHandler(sourceDef.uri); if (handler !== null) loader2 = handler; } return this.loadTextureImage(textureIndex, sourceIndex, loader2); } loadTextureImage(textureIndex, sourceIndex, loader2) { const parser = this; const json = this.json; const textureDef = json.textures[textureIndex]; const sourceDef = json.images[sourceIndex]; const cacheKey = (sourceDef.uri || sourceDef.bufferView) + ":" + textureDef.sampler; if (this.textureCache[cacheKey]) { return this.textureCache[cacheKey]; } const promise = this.loadImageSource(sourceIndex, loader2).then(function(texture) { texture.flipY = false; if (textureDef.name) texture.name = textureDef.name; const samplers = json.samplers || {}; const sampler = samplers[textureDef.sampler] || {}; texture.magFilter = WEBGL_FILTERS[sampler.magFilter] || LinearFilter; texture.minFilter = WEBGL_FILTERS[sampler.minFilter] || LinearMipmapLinearFilter; texture.wrapS = WEBGL_WRAPPINGS[sampler.wrapS] || RepeatWrapping; texture.wrapT = WEBGL_WRAPPINGS[sampler.wrapT] || RepeatWrapping; parser.associations.set(texture, { textures: textureIndex }); return texture; }).catch(function() { return null; }); this.textureCache[cacheKey] = promise; return promise; } loadImageSource(sourceIndex, loader2) { const parser = this; const json = this.json; const options = this.options; if (this.sourceCache[sourceIndex] !== void 0) { return this.sourceCache[sourceIndex].then((texture) => texture.clone()); } const sourceDef = json.images[sourceIndex]; const URL2 = self.URL || self.webkitURL; let sourceURI = sourceDef.uri || ""; let isObjectURL = false; if (sourceDef.bufferView !== void 0) { sourceURI = parser.getDependency("bufferView", sourceDef.bufferView).then(function(bufferView) { isObjectURL = true; const blob = new Blob([bufferView], { type: sourceDef.mimeType }); sourceURI = URL2.createObjectURL(blob); return sourceURI; }); } else if (sourceDef.uri === void 0) { throw new Error("THREE.GLTFLoader: Image " + sourceIndex + " is missing URI and bufferView"); } const promise = Promise.resolve(sourceURI).then(function(sourceURI2) { return new Promise(function(resolve, reject) { let onLoad = resolve; if (loader2.isImageBitmapLoader === true) { onLoad = function(imageBitmap) { const texture = new Texture(imageBitmap); texture.needsUpdate = true; resolve(texture); }; } loader2.load(LoaderUtils.resolveURL(sourceURI2, options.path), onLoad, void 0, reject); }); }).then(function(texture) { if (isObjectURL === true) { URL2.revokeObjectURL(sourceURI); } texture.userData.mimeType = sourceDef.mimeType || getImageURIMimeType(sourceDef.uri); return texture; }).catch(function(error) { console.error("THREE.GLTFLoader: Couldn't load texture", sourceURI); throw error; }); this.sourceCache[sourceIndex] = promise; return promise; } assignTexture(materialParams, mapName, mapDef, encoding) { const parser = this; return this.getDependency("texture", mapDef.index).then(function(texture) { if (mapDef.texCoord !== void 0 && mapDef.texCoord != 0 && !(mapName === "aoMap" && mapDef.texCoord == 1)) { console.warn("THREE.GLTFLoader: Custom UV set " + mapDef.texCoord + " for texture " + mapName + " not yet supported."); } if (parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM]) { const transform = mapDef.extensions !== void 0 ? mapDef.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM] : void 0; if (transform) { const gltfReference = parser.associations.get(texture); texture = parser.extensions[EXTENSIONS.KHR_TEXTURE_TRANSFORM].extendTexture(texture, transform); parser.associations.set(texture, gltfReference); } } if (encoding !== void 0) { texture.encoding = encoding; } materialParams[mapName] = texture; return texture; }); } assignFinalMaterial(mesh) { const geometry = mesh.geometry; let material = mesh.material; const useDerivativeTangents = geometry.attributes.tangent === void 0; const useVertexColors = geometry.attributes.color !== void 0; const useFlatShading = geometry.attributes.normal === void 0; if (mesh.isPoints) { const cacheKey = "PointsMaterial:" + material.uuid; let pointsMaterial = this.cache.get(cacheKey); if (!pointsMaterial) { pointsMaterial = new PointsMaterial(); Material.prototype.copy.call(pointsMaterial, material); pointsMaterial.color.copy(material.color); pointsMaterial.map = material.map; pointsMaterial.sizeAttenuation = false; this.cache.add(cacheKey, pointsMaterial); } material = pointsMaterial; } else if (mesh.isLine) { const cacheKey = "LineBasicMaterial:" + material.uuid; let lineMaterial = this.cache.get(cacheKey); if (!lineMaterial) { lineMaterial = new LineBasicMaterial(); Material.prototype.copy.call(lineMaterial, material); lineMaterial.color.copy(material.color); this.cache.add(cacheKey, lineMaterial); } material = lineMaterial; } if (useDerivativeTangents || useVertexColors || useFlatShading) { let cacheKey = "ClonedMaterial:" + material.uuid + ":"; if (material.isGLTFSpecularGlossinessMaterial) cacheKey += "specular-glossiness:"; if (useDerivativeTangents) cacheKey += "derivative-tangents:"; if (useVertexColors) cacheKey += "vertex-colors:"; if (useFlatShading) cacheKey += "flat-shading:"; let cachedMaterial = this.cache.get(cacheKey); if (!cachedMaterial) { cachedMaterial = material.clone(); if (useVertexColors) cachedMaterial.vertexColors = true; if (useFlatShading) cachedMaterial.flatShading = true; if (useDerivativeTangents) { if (cachedMaterial.normalScale) cachedMaterial.normalScale.y *= -1; if (cachedMaterial.clearcoatNormalScale) cachedMaterial.clearcoatNormalScale.y *= -1; } this.cache.add(cacheKey, cachedMaterial); this.associations.set(cachedMaterial, this.associations.get(material)); } material = cachedMaterial; } if (material.aoMap && geometry.attributes.uv2 === void 0 && geometry.attributes.uv !== void 0) { geometry.setAttribute("uv2", geometry.attributes.uv); } mesh.material = material; } getMaterialType() { return MeshStandardMaterial; } loadMaterial(materialIndex) { const parser = this; const json = this.json; const extensions = this.extensions; const materialDef = json.materials[materialIndex]; let materialType; const materialParams = {}; const materialExtensions = materialDef.extensions || {}; const pending = []; if (materialExtensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS]) { const sgExtension = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS]; materialType = sgExtension.getMaterialType(); pending.push(sgExtension.extendParams(materialParams, materialDef, parser)); } else if (materialExtensions[EXTENSIONS.KHR_MATERIALS_UNLIT]) { const kmuExtension = extensions[EXTENSIONS.KHR_MATERIALS_UNLIT]; materialType = kmuExtension.getMaterialType(); pending.push(kmuExtension.extendParams(materialParams, materialDef, parser)); } else { const metallicRoughness = materialDef.pbrMetallicRoughness || {}; materialParams.color = new Color(1, 1, 1); materialParams.opacity = 1; if (Array.isArray(metallicRoughness.baseColorFactor)) { const array = metallicRoughness.baseColorFactor; materialParams.color.fromArray(array); materialParams.opacity = array[3]; } if (metallicRoughness.baseColorTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "map", metallicRoughness.baseColorTexture, sRGBEncoding)); } materialParams.metalness = metallicRoughness.metallicFactor !== void 0 ? metallicRoughness.metallicFactor : 1; materialParams.roughness = metallicRoughness.roughnessFactor !== void 0 ? metallicRoughness.roughnessFactor : 1; if (metallicRoughness.metallicRoughnessTexture !== void 0) { pending.push(parser.assignTexture(materialParams, "metalnessMap", metallicRoughness.metallicRoughnessTexture)); pending.push(parser.assignTexture(materialParams, "roughnessMap", metallicRoughness.metallicRoughnessTexture)); } materialType = this._invokeOne(function(ext) { return ext.getMaterialType && ext.getMaterialType(materialIndex); }); pending.push(Promise.all(this._invokeAll(function(ext) { return ext.extendMaterialParams && ext.extendMaterialParams(materialIndex, materialParams); }))); } if (materialDef.doubleSided === true) { materialParams.side = DoubleSide; } const alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE; if (alphaMode === ALPHA_MODES.BLEND) { materialParams.transparent = true; materialParams.depthWrite = false; } else { materialParams.transparent = false; if (alphaMode === ALPHA_MODES.MASK) { materialParams.alphaTest = materialDef.alphaCutoff !== void 0 ? materialDef.alphaCutoff : 0.5; } } if (materialDef.normalTexture !== void 0 && materialType !== MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, "normalMap", materialDef.normalTexture)); materialParams.normalScale = new Vector2(1, 1); if (materialDef.normalTexture.scale !== void 0) { const scale = materialDef.normalTexture.scale; materialParams.normalScale.set(scale, scale); } } if (materialDef.occlusionTexture !== void 0 && materialType !== MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, "aoMap", materialDef.occlusionTexture)); if (materialDef.occlusionTexture.strength !== void 0) { materialParams.aoMapIntensity = materialDef.occlusionTexture.strength; } } if (materialDef.emissiveFactor !== void 0 && materialType !== MeshBasicMaterial) { materialParams.emissive = new Color().fromArray(materialDef.emissiveFactor); } if (materialDef.emissiveTexture !== void 0 && materialType !== MeshBasicMaterial) { pending.push(parser.assignTexture(materialParams, "emissiveMap", materialDef.emissiveTexture, sRGBEncoding)); } return Promise.all(pending).then(function() { let material; if (materialType === GLTFMeshStandardSGMaterial) { material = extensions[EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS].createMaterial(materialParams); } else { material = new materialType(materialParams); } if (materialDef.name) material.name = materialDef.name; assignExtrasToUserData(material, materialDef); parser.associations.set(material, { materials: materialIndex }); if (materialDef.extensions) addUnknownExtensionsToUserData(extensions, material, materialDef); return material; }); } createUniqueName(originalName) { const sanitizedName = PropertyBinding.sanitizeNodeName(originalName || ""); let name = sanitizedName; for (let i = 1; this.nodeNamesUsed[name]; ++i) { name = sanitizedName + "_" + i; } this.nodeNamesUsed[name] = true; return name; } loadGeometries(primitives) { const parser = this; const extensions = this.extensions; const cache2 = this.primitiveCache; function createDracoPrimitive(primitive) { return extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION].decodePrimitive(primitive, parser).then(function(geometry) { return addPrimitiveAttributes(geometry, primitive, parser); }); } const pending = []; for (let i = 0, il = primitives.length; i < il; i++) { const primitive = primitives[i]; const cacheKey = createPrimitiveKey(primitive); const cached = cache2[cacheKey]; if (cached) { pending.push(cached.promise); } else { let geometryPromise; if (primitive.extensions && primitive.extensions[EXTENSIONS.KHR_DRACO_MESH_COMPRESSION]) { geometryPromise = createDracoPrimitive(primitive); } else { geometryPromise = addPrimitiveAttributes(new BufferGeometry(), primitive, parser); } cache2[cacheKey] = { primitive, promise: geometryPromise }; pending.push(geometryPromise); } } return Promise.all(pending); } loadMesh(meshIndex) { const parser = this; const json = this.json; const extensions = this.extensions; const meshDef = json.meshes[meshIndex]; const primitives = meshDef.primitives; const pending = []; for (let i = 0, il = primitives.length; i < il; i++) { const material = primitives[i].material === void 0 ? createDefaultMaterial(this.cache) : this.getDependency("material", primitives[i].material); pending.push(material); } pending.push(parser.loadGeometries(primitives)); return Promise.all(pending).then(function(results) { const materials = results.slice(0, results.length - 1); const geometries = results[results.length - 1]; const meshes = []; for (let i = 0, il = geometries.length; i < il; i++) { const geometry = geometries[i]; const primitive = primitives[i]; let mesh; const material = materials[i]; if (primitive.mode === WEBGL_CONSTANTS.TRIANGLES || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP || primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN || primitive.mode === void 0) { mesh = meshDef.isSkinnedMesh === true ? new SkinnedMesh(geometry, material) : new Mesh(geometry, material); if (mesh.isSkinnedMesh === true && !mesh.geometry.attributes.skinWeight.normalized) { mesh.normalizeSkinWeights(); } if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP) { mesh.geometry = toTrianglesDrawMode(mesh.geometry, TriangleStripDrawMode); } else if (primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN) { mesh.geometry = toTrianglesDrawMode(mesh.geometry, TriangleFanDrawMode); } } else if (primitive.mode === WEBGL_CONSTANTS.LINES) { mesh = new LineSegments(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.LINE_STRIP) { mesh = new Line(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.LINE_LOOP) { mesh = new LineLoop(geometry, material); } else if (primitive.mode === WEBGL_CONSTANTS.POINTS) { mesh = new Points(geometry, material); } else { throw new Error("THREE.GLTFLoader: Primitive mode unsupported: " + primitive.mode); } if (Object.keys(mesh.geometry.morphAttributes).length > 0) { updateMorphTargets(mesh, meshDef); } mesh.name = parser.createUniqueName(meshDef.name || "mesh_" + meshIndex); assignExtrasToUserData(mesh, meshDef); if (primitive.extensions) addUnknownExtensionsToUserData(extensions, mesh, primitive); parser.assignFinalMaterial(mesh); meshes.push(mesh); } for (let i = 0, il = meshes.length; i < il; i++) { parser.associations.set(meshes[i], { meshes: meshIndex, primitives: i }); } if (meshes.length === 1) { return meshes[0]; } const group = new Group$1(); parser.associations.set(group, { meshes: meshIndex }); for (let i = 0, il = meshes.length; i < il; i++) { group.add(meshes[i]); } return group; }); } loadCamera(cameraIndex) { let camera; const cameraDef = this.json.cameras[cameraIndex]; const params = cameraDef[cameraDef.type]; if (!params) { console.warn("THREE.GLTFLoader: Missing camera parameters."); return; } if (cameraDef.type === "perspective") { camera = new PerspectiveCamera(MathUtils.radToDeg(params.yfov), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6); } else if (cameraDef.type === "orthographic") { camera = new OrthographicCamera(-params.xmag, params.xmag, params.ymag, -params.ymag, params.znear, params.zfar); } if (cameraDef.name) camera.name = this.createUniqueName(cameraDef.name); assignExtrasToUserData(camera, cameraDef); return Promise.resolve(camera); } loadSkin(skinIndex) { const skinDef = this.json.skins[skinIndex]; const skinEntry = { joints: skinDef.joints }; if (skinDef.inverseBindMatrices === void 0) { return Promise.resolve(skinEntry); } return this.getDependency("accessor", skinDef.inverseBindMatrices).then(function(accessor) { skinEntry.inverseBindMatrices = accessor; return skinEntry; }); } loadAnimation(animationIndex) { const json = this.json; const animationDef = json.animations[animationIndex]; const pendingNodes = []; const pendingInputAccessors = []; const pendingOutputAccessors = []; const pendingSamplers = []; const pendingTargets = []; for (let i = 0, il = animationDef.channels.length; i < il; i++) { const channel = animationDef.channels[i]; const sampler = animationDef.samplers[channel.sampler]; const target = channel.target; const name = target.node !== void 0 ? target.node : target.id; const input = animationDef.parameters !== void 0 ? animationDef.parameters[sampler.input] : sampler.input; const output = animationDef.parameters !== void 0 ? animationDef.parameters[sampler.output] : sampler.output; pendingNodes.push(this.getDependency("node", name)); pendingInputAccessors.push(this.getDependency("accessor", input)); pendingOutputAccessors.push(this.getDependency("accessor", output)); pendingSamplers.push(sampler); pendingTargets.push(target); } return Promise.all([ Promise.all(pendingNodes), Promise.all(pendingInputAccessors), Promise.all(pendingOutputAccessors), Promise.all(pendingSamplers), Promise.all(pendingTargets) ]).then(function(dependencies) { const nodes = dependencies[0]; const inputAccessors = dependencies[1]; const outputAccessors = dependencies[2]; const samplers = dependencies[3]; const targets = dependencies[4]; const tracks = []; for (let i = 0, il = nodes.length; i < il; i++) { const node = nodes[i]; const inputAccessor = inputAccessors[i]; const outputAccessor = outputAccessors[i]; const sampler = samplers[i]; const target = targets[i]; if (node === void 0) continue; node.updateMatrix(); node.matrixAutoUpdate = true; let TypedKeyframeTrack; switch (PATH_PROPERTIES[target.path]) { case PATH_PROPERTIES.weights: TypedKeyframeTrack = NumberKeyframeTrack; break; case PATH_PROPERTIES.rotation: TypedKeyframeTrack = QuaternionKeyframeTrack; break; case PATH_PROPERTIES.position: case PATH_PROPERTIES.scale: default: TypedKeyframeTrack = VectorKeyframeTrack; break; } const targetName = node.name ? node.name : node.uuid; const interpolation = sampler.interpolation !== void 0 ? INTERPOLATION[sampler.interpolation] : InterpolateLinear; const targetNames = []; if (PATH_PROPERTIES[target.path] === PATH_PROPERTIES.weights) { node.traverse(function(object) { if (object.morphTargetInfluences) { targetNames.push(object.name ? object.name : object.uuid); } }); } else { targetNames.push(targetName); } let outputArray = outputAccessor.array; if (outputAccessor.normalized) { const scale = getNormalizedComponentScale(outputArray.constructor); const scaled = new Float32Array(outputArray.length); for (let j = 0, jl = outputArray.length; j < jl; j++) { scaled[j] = outputArray[j] * scale; } outputArray = scaled; } for (let j = 0, jl = targetNames.length; j < jl; j++) { const track = new TypedKeyframeTrack(targetNames[j] + "." + PATH_PROPERTIES[target.path], inputAccessor.array, outputArray, interpolation); if (sampler.interpolation === "CUBICSPLINE") { track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline(result) { const interpolantType = this instanceof QuaternionKeyframeTrack ? GLTFCubicSplineQuaternionInterpolant : GLTFCubicSplineInterpolant; return new interpolantType(this.times, this.values, this.getValueSize() / 3, result); }; track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true; } tracks.push(track); } } const name = animationDef.name ? animationDef.name : "animation_" + animationIndex; return new AnimationClip(name, void 0, tracks); }); } createNodeMesh(nodeIndex) { const json = this.json; const parser = this; const nodeDef = json.nodes[nodeIndex]; if (nodeDef.mesh === void 0) return null; return parser.getDependency("mesh", nodeDef.mesh).then(function(mesh) { const node = parser._getNodeRef(parser.meshCache, nodeDef.mesh, mesh); if (nodeDef.weights !== void 0) { node.traverse(function(o) { if (!o.isMesh) return; for (let i = 0, il = nodeDef.weights.length; i < il; i++) { o.morphTargetInfluences[i] = nodeDef.weights[i]; } }); } return node; }); } loadNode(nodeIndex) { const json = this.json; const extensions = this.extensions; const parser = this; const nodeDef = json.nodes[nodeIndex]; const nodeName = nodeDef.name ? parser.createUniqueName(nodeDef.name) : ""; return function() { const pending = []; const meshPromise = parser._invokeOne(function(ext) { return ext.createNodeMesh && ext.createNodeMesh(nodeIndex); }); if (meshPromise) { pending.push(meshPromise); } if (nodeDef.camera !== void 0) { pending.push(parser.getDependency("camera", nodeDef.camera).then(function(camera) { return parser._getNodeRef(parser.cameraCache, nodeDef.camera, camera); })); } parser._invokeAll(function(ext) { return ext.createNodeAttachment && ext.createNodeAttachment(nodeIndex); }).forEach(function(promise) { pending.push(promise); }); return Promise.all(pending); }().then(function(objects) { let node; if (nodeDef.isBone === true) { node = new Bone(); } else if (objects.length > 1) { node = new Group$1(); } else if (objects.length === 1) { node = objects[0]; } else { node = new Object3D(); } if (node !== objects[0]) { for (let i = 0, il = objects.length; i < il; i++) { node.add(objects[i]); } } if (nodeDef.name) { node.userData.name = nodeDef.name; node.name = nodeName; } assignExtrasToUserData(node, nodeDef); if (nodeDef.extensions) addUnknownExtensionsToUserData(extensions, node, nodeDef); if (nodeDef.matrix !== void 0) { const matrix = new Matrix4(); matrix.fromArray(nodeDef.matrix); node.applyMatrix4(matrix); } else { if (nodeDef.translation !== void 0) { node.position.fromArray(nodeDef.translation); } if (nodeDef.rotation !== void 0) { node.quaternion.fromArray(nodeDef.rotation); } if (nodeDef.scale !== void 0) { node.scale.fromArray(nodeDef.scale); } } if (!parser.associations.has(node)) { parser.associations.set(node, {}); } parser.associations.get(node).nodes = nodeIndex; return node; }); } loadScene(sceneIndex) { const json = this.json; const extensions = this.extensions; const sceneDef = this.json.scenes[sceneIndex]; const parser = this; const scene = new Group$1(); if (sceneDef.name) scene.name = parser.createUniqueName(sceneDef.name); assignExtrasToUserData(scene, sceneDef); if (sceneDef.extensions) addUnknownExtensionsToUserData(extensions, scene, sceneDef); const nodeIds = sceneDef.nodes || []; const pending = []; for (let i = 0, il = nodeIds.length; i < il; i++) { pending.push(buildNodeHierarchy(nodeIds[i], scene, json, parser)); } return Promise.all(pending).then(function() { const reduceAssociations = (node) => { const reducedAssociations = /* @__PURE__ */ new Map(); for (const [key, value] of parser.associations) { if (key instanceof Material || key instanceof Texture) { reducedAssociations.set(key, value); } } node.traverse((node2) => { const mappings = parser.associations.get(node2); if (mappings != null) { reducedAssociations.set(node2, mappings); } }); return reducedAssociations; }; parser.associations = reduceAssociations(scene); return scene; }); } } function buildNodeHierarchy(nodeId, parentObject, json, parser) { const nodeDef = json.nodes[nodeId]; return parser.getDependency("node", nodeId).then(function(node) { if (nodeDef.skin === void 0) return node; let skinEntry; return parser.getDependency("skin", nodeDef.skin).then(function(skin) { skinEntry = skin; const pendingJoints = []; for (let i = 0, il = skinEntry.joints.length; i < il; i++) { pendingJoints.push(parser.getDependency("node", skinEntry.joints[i])); } return Promise.all(pendingJoints); }).then(function(jointNodes) { node.traverse(function(mesh) { if (!mesh.isMesh) return; const bones = []; const boneInverses = []; for (let j = 0, jl = jointNodes.length; j < jl; j++) { const jointNode = jointNodes[j]; if (jointNode) { bones.push(jointNode); const mat = new Matrix4(); if (skinEntry.inverseBindMatrices !== void 0) { mat.fromArray(skinEntry.inverseBindMatrices.array, j * 16); } boneInverses.push(mat); } else { console.warn('THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[j]); } } mesh.bind(new Skeleton(bones, boneInverses), mesh.matrixWorld); }); return node; }); }).then(function(node) { parentObject.add(node); const pending = []; if (nodeDef.children) { const children = nodeDef.children; for (let i = 0, il = children.length; i < il; i++) { const child = children[i]; pending.push(buildNodeHierarchy(child, node, json, parser)); } } return Promise.all(pending); }); } function computeBounds(geometry, primitiveDef, parser) { const attributes = primitiveDef.attributes; const box = new Box3(); if (attributes.POSITION !== void 0) { const accessor = parser.json.accessors[attributes.POSITION]; const min = accessor.min; const max = accessor.max; if (min !== void 0 && max !== void 0) { box.set(new Vector3(min[0], min[1], min[2]), new Vector3(max[0], max[1], max[2])); if (accessor.normalized) { const boxScale = getNormalizedComponentScale(WEBGL_COMPONENT_TYPES[accessor.componentType]); box.min.multiplyScalar(boxScale); box.max.multiplyScalar(boxScale); } } else { console.warn("THREE.GLTFLoader: Missing min/max properties for accessor POSITION."); return; } } else { return; } const targets = primitiveDef.targets; if (targets !== void 0) { const maxDisplacement = new Vector3(); const vector = new Vector3(); for (let i = 0, il = targets.length; i < il; i++) { const target = targets[i]; if (target.POSITION !== void 0) { const accessor = parser.json.accessors[target.POSITION]; const min = accessor.min; const max = accessor.max; if (min !== void 0 && max !== void 0) { vector.setX(Math.max(Math.abs(min[0]), Math.abs(max[0]))); vector.setY(Math.max(Math.abs(min[1]), Math.abs(max[1]))); vector.setZ(Math.max(Math.abs(min[2]), Math.abs(max[2]))); if (accessor.normalized) { const boxScale = getNormalizedComponentScale(WEBGL_COMPONENT_TYPES[accessor.componentType]); vector.multiplyScalar(boxScale); } maxDisplacement.max(vector); } else { console.warn("THREE.GLTFLoader: Missing min/max properties for accessor POSITION."); } } } box.expandByVector(maxDisplacement); } geometry.boundingBox = box; const sphere = new Sphere$1(); box.getCenter(sphere.center); sphere.radius = box.min.distanceTo(box.max) / 2; geometry.boundingSphere = sphere; } function addPrimitiveAttributes(geometry, primitiveDef, parser) { const attributes = primitiveDef.attributes; const pending = []; function assignAttributeAccessor(accessorIndex, attributeName) { return parser.getDependency("accessor", accessorIndex).then(function(accessor) { geometry.setAttribute(attributeName, accessor); }); } for (const gltfAttributeName in attributes) { const threeAttributeName = ATTRIBUTES[gltfAttributeName] || gltfAttributeName.toLowerCase(); if (threeAttributeName in geometry.attributes) continue; pending.push(assignAttributeAccessor(attributes[gltfAttributeName], threeAttributeName)); } if (primitiveDef.indices !== void 0 && !geometry.index) { const accessor = parser.getDependency("accessor", primitiveDef.indices).then(function(accessor2) { geometry.setIndex(accessor2); }); pending.push(accessor); } assignExtrasToUserData(geometry, primitiveDef); computeBounds(geometry, primitiveDef, parser); return Promise.all(pending).then(function() { return primitiveDef.targets !== void 0 ? addMorphTargets(geometry, primitiveDef.targets, parser) : geometry; }); } function toTrianglesDrawMode(geometry, drawMode) { let index = geometry.getIndex(); if (index === null) { const indices = []; const position = geometry.getAttribute("position"); if (position !== void 0) { for (let i = 0; i < position.count; i++) { indices.push(i); } geometry.setIndex(indices); index = geometry.getIndex(); } else { console.error("THREE.GLTFLoader.toTrianglesDrawMode(): Undefined position attribute. Processing not possible."); return geometry; } } const numberOfTriangles = index.count - 2; const newIndices = []; if (drawMode === TriangleFanDrawMode) { for (let i = 1; i <= numberOfTriangles; i++) { newIndices.push(index.getX(0)); newIndices.push(index.getX(i)); newIndices.push(index.getX(i + 1)); } } else { for (let i = 0; i < numberOfTriangles; i++) { if (i % 2 === 0) { newIndices.push(index.getX(i)); newIndices.push(index.getX(i + 1)); newIndices.push(index.getX(i + 2)); } else { newIndices.push(index.getX(i + 2)); newIndices.push(index.getX(i + 1)); newIndices.push(index.getX(i)); } } } if (newIndices.length / 3 !== numberOfTriangles) { console.error("THREE.GLTFLoader.toTrianglesDrawMode(): Unable to generate correct amount of triangles."); } const newGeometry = geometry.clone(); newGeometry.setIndex(newIndices); return newGeometry; } const _taskCache = /* @__PURE__ */ new WeakMap(); class DRACOLoader extends Loader { constructor(manager) { super(manager); this.decoderPath = ""; this.decoderConfig = {}; this.decoderBinary = null; this.decoderPending = null; this.workerLimit = 4; this.workerPool = []; this.workerNextTaskID = 1; this.workerSourceURL = ""; this.defaultAttributeIDs = { position: "POSITION", normal: "NORMAL", color: "COLOR", uv: "TEX_COORD" }; this.defaultAttributeTypes = { position: "Float32Array", normal: "Float32Array", color: "Float32Array", uv: "Float32Array" }; } setDecoderPath(path) { this.decoderPath = path; return this; } setDecoderConfig(config) { this.decoderConfig = config; return this; } setWorkerLimit(workerLimit) { this.workerLimit = workerLimit; return this; } load(url, onLoad, onProgress, onError) { const loader2 = new FileLoader(this.manager); loader2.setPath(this.path); loader2.setResponseType("arraybuffer"); loader2.setRequestHeader(this.requestHeader); loader2.setWithCredentials(this.withCredentials); loader2.load(url, (buffer) => { const taskConfig = { attributeIDs: this.defaultAttributeIDs, attributeTypes: this.defaultAttributeTypes, useUniqueIDs: false }; this.decodeGeometry(buffer, taskConfig).then(onLoad).catch(onError); }, onProgress, onError); } decodeDracoFile(buffer, callback, attributeIDs, attributeTypes) { const taskConfig = { attributeIDs: attributeIDs || this.defaultAttributeIDs, attributeTypes: attributeTypes || this.defaultAttributeTypes, useUniqueIDs: !!attributeIDs }; this.decodeGeometry(buffer, taskConfig).then(callback); } decodeGeometry(buffer, taskConfig) { for (const attribute in taskConfig.attributeTypes) { const type = taskConfig.attributeTypes[attribute]; if (type.BYTES_PER_ELEMENT !== void 0) { taskConfig.attributeTypes[attribute] = type.name; } } const taskKey = JSON.stringify(taskConfig); if (_taskCache.has(buffer)) { const cachedTask = _taskCache.get(buffer); if (cachedTask.key === taskKey) { return cachedTask.promise; } else if (buffer.byteLength === 0) { throw new Error("THREE.DRACOLoader: Unable to re-decode a buffer with different settings. Buffer has already been transferred."); } } let worker; const taskID = this.workerNextTaskID++; const taskCost = buffer.byteLength; const geometryPending = this._getWorker(taskID, taskCost).then((_worker) => { worker = _worker; return new Promise((resolve, reject) => { worker._callbacks[taskID] = { resolve, reject }; worker.postMessage({ type: "decode", id: taskID, taskConfig, buffer }, [buffer]); }); }).then((message) => this._createGeometry(message.geometry)); geometryPending.catch(() => true).then(() => { if (worker && taskID) { this._releaseTask(worker, taskID); } }); _taskCache.set(buffer, { key: taskKey, promise: geometryPending }); return geometryPending; } _createGeometry(geometryData) { const geometry = new BufferGeometry(); if (geometryData.index) { geometry.setIndex(new BufferAttribute(geometryData.index.array, 1)); } for (let i = 0; i < geometryData.attributes.length; i++) { const attribute = geometryData.attributes[i]; const name = attribute.name; const array = attribute.array; const itemSize = attribute.itemSize; geometry.setAttribute(name, new BufferAttribute(array, itemSize)); } return geometry; } _loadLibrary(url, responseType) { const loader2 = new FileLoader(this.manager); loader2.setPath(this.decoderPath); loader2.setResponseType(responseType); loader2.setWithCredentials(this.withCredentials); return new Promise((resolve, reject) => { loader2.load(url, resolve, void 0, reject); }); } preload() { this._initDecoder(); return this; } _initDecoder() { if (this.decoderPending) return this.decoderPending; const useJS = typeof WebAssembly !== "object" || this.decoderConfig.type === "js"; const librariesPending = []; if (useJS) { librariesPending.push(this._loadLibrary("draco_decoder.js", "text")); } else { librariesPending.push(this._loadLibrary("draco_wasm_wrapper.js", "text")); librariesPending.push(this._loadLibrary("draco_decoder.wasm", "arraybuffer")); } this.decoderPending = Promise.all(librariesPending).then((libraries) => { const jsContent = libraries[0]; if (!useJS) { this.decoderConfig.wasmBinary = libraries[1]; } const fn = DRACOWorker.toString(); const body = [ "/* draco decoder */", jsContent, "", "/* worker */", fn.substring(fn.indexOf("{") + 1, fn.lastIndexOf("}")) ].join("\n"); this.workerSourceURL = URL.createObjectURL(new Blob([body])); }); return this.decoderPending; } _getWorker(taskID, taskCost) { return this._initDecoder().then(() => { if (this.workerPool.length < this.workerLimit) { const worker2 = new Worker(this.workerSourceURL); worker2._callbacks = {}; worker2._taskCosts = {}; worker2._taskLoad = 0; worker2.postMessage({ type: "init", decoderConfig: this.decoderConfig }); worker2.onmessage = function(e) { const message = e.data; switch (message.type) { case "decode": worker2._callbacks[message.id].resolve(message); break; case "error": worker2._callbacks[message.id].reject(message); break; default: console.error('THREE.DRACOLoader: Unexpected message, "' + message.type + '"'); } }; this.workerPool.push(worker2); } else { this.workerPool.sort(function(a, b) { return a._taskLoad > b._taskLoad ? -1 : 1; }); } const worker = this.workerPool[this.workerPool.length - 1]; worker._taskCosts[taskID] = taskCost; worker._taskLoad += taskCost; return worker; }); } _releaseTask(worker, taskID) { worker._taskLoad -= worker._taskCosts[taskID]; delete worker._callbacks[taskID]; delete worker._taskCosts[taskID]; } debug() { console.log("Task load: ", this.workerPool.map((worker) => worker._taskLoad)); } dispose() { for (let i = 0; i < this.workerPool.length; ++i) { this.workerPool[i].terminate(); } this.workerPool.length = 0; return this; } } function DRACOWorker() { let decoderConfig; let decoderPending; onmessage = function(e) { const message = e.data; switch (message.type) { case "init": decoderConfig = message.decoderConfig; decoderPending = new Promise(function(resolve) { decoderConfig.onModuleLoaded = function(draco) { resolve({ draco }); }; DracoDecoderModule(decoderConfig); }); break; case "decode": const buffer = message.buffer; const taskConfig = message.taskConfig; decoderPending.then((module) => { const draco = module.draco; const decoder = new draco.Decoder(); const decoderBuffer = new draco.DecoderBuffer(); decoderBuffer.Init(new Int8Array(buffer), buffer.byteLength); try { const geometry = decodeGeometry(draco, decoder, decoderBuffer, taskConfig); const buffers = geometry.attributes.map((attr) => attr.array.buffer); if (geometry.index) buffers.push(geometry.index.array.buffer); self.postMessage({ type: "decode", id: message.id, geometry }, buffers); } catch (error) { console.error(error); self.postMessage({ type: "error", id: message.id, error: error.message }); } finally { draco.destroy(decoderBuffer); draco.destroy(decoder); } }); break; } }; function decodeGeometry(draco, decoder, decoderBuffer, taskConfig) { const attributeIDs = taskConfig.attributeIDs; const attributeTypes = taskConfig.attributeTypes; let dracoGeometry; let decodingStatus; const geometryType = decoder.GetEncodedGeometryType(decoderBuffer); if (geometryType === draco.TRIANGULAR_MESH) { dracoGeometry = new draco.Mesh(); decodingStatus = decoder.DecodeBufferToMesh(decoderBuffer, dracoGeometry); } else if (geometryType === draco.POINT_CLOUD) { dracoGeometry = new draco.PointCloud(); decodingStatus = decoder.DecodeBufferToPointCloud(decoderBuffer, dracoGeometry); } else { throw new Error("THREE.DRACOLoader: Unexpected geometry type."); } if (!decodingStatus.ok() || dracoGeometry.ptr === 0) { throw new Error("THREE.DRACOLoader: Decoding failed: " + decodingStatus.error_msg()); } const geometry = { index: null, attributes: [] }; for (const attributeName in attributeIDs) { const attributeType = self[attributeTypes[attributeName]]; let attribute; let attributeID; if (taskConfig.useUniqueIDs) { attributeID = attributeIDs[attributeName]; attribute = decoder.GetAttributeByUniqueId(dracoGeometry, attributeID); } else { attributeID = decoder.GetAttributeId(dracoGeometry, draco[attributeIDs[attributeName]]); if (attributeID === -1) continue; attribute = decoder.GetAttribute(dracoGeometry, attributeID); } geometry.attributes.push(decodeAttribute(draco, decoder, dracoGeometry, attributeName, attributeType, attribute)); } if (geometryType === draco.TRIANGULAR_MESH) { geometry.index = decodeIndex(draco, decoder, dracoGeometry); } draco.destroy(dracoGeometry); return geometry; } function decodeIndex(draco, decoder, dracoGeometry) { const numFaces = dracoGeometry.num_faces(); const numIndices = numFaces * 3; const byteLength = numIndices * 4; const ptr = draco._malloc(byteLength); decoder.GetTrianglesUInt32Array(dracoGeometry, byteLength, ptr); const index = new Uint32Array(draco.HEAPF32.buffer, ptr, numIndices).slice(); draco._free(ptr); return { array: index, itemSize: 1 }; } function decodeAttribute(draco, decoder, dracoGeometry, attributeName, attributeType, attribute) { const numComponents = attribute.num_components(); const numPoints = dracoGeometry.num_points(); const numValues = numPoints * numComponents; const byteLength = numValues * attributeType.BYTES_PER_ELEMENT; const dataType = getDracoDataType(draco, attributeType); const ptr = draco._malloc(byteLength); decoder.GetAttributeDataArrayForAllPoints(dracoGeometry, attribute, dataType, byteLength, ptr); const array = new attributeType(draco.HEAPF32.buffer, ptr, numValues).slice(); draco._free(ptr); return { name: attributeName, array, itemSize: numComponents }; } function getDracoDataType(draco, attributeType) { switch (attributeType) { case Float32Array: return draco.DT_FLOAT32; case Int8Array: return draco.DT_INT8; case Int16Array: return draco.DT_INT16; case Int32Array: return draco.DT_INT32; case Uint8Array: return draco.DT_UINT8; case Uint16Array: return draco.DT_UINT16; case Uint32Array: return draco.DT_UINT32; } } } const cache = /* @__PURE__ */ new Map(); const loader = new GLTFLoader(); const dracoLoader = new DRACOLoader(); dracoLoader.setDecoderPath(settings.wasmPath); loader.setDRACOLoader(dracoLoader); var loadGLTF = async (url, clone) => { const [gltf, noBone] = await forceGet(cache, url, () => new Promise((resolve, reject) => { increaseLoadingCount(); loader.load(url, (gltf2) => { decreaseLoadingCount(); let noBone2 = true; for (const scene of gltf2.scenes) scene.traverse((child) => { var _a; noBone2 && child instanceof Bone && (noBone2 = false); ((_a = child.material) === null || _a === void 0 ? void 0 : _a.map) && (child.material.map.encoding = LinearEncoding); }); resolve([gltf2, noBone2]); }, handleProgress, () => { decreaseLoadingCount(); reject(); }); })); if (clone) return cloneSkinnedMesh(gltf.scene, noBone, gltf.animations); return gltf.scene; }; export { loadGLTF as default }; //# sourceMappingURL=loadGLTF.mjs.map